
8 The Delphi Magazine Issue 56

Visual Form Inheritance
And Frames: Friend Or Foe?
by Guy Smith-Ferrier

Delphi 5 saw the introduction of
frames, which have a lot in

common with visual form inheri-
tance (VFI), introduced in Delphi 2.
My goal in this article is to give you
an analysis of the strengths and
weaknesses of VFI and frames, plus
an explanation of why you would
want to use them and what you
would use them for.

VFI: A Quick Recap
VFI allows developers to create a
form and then create new forms
based on it. As such it is a clever
blend of classic OOP inheritance,
using Delphi’s class inheritance,
and visual inheritance, using
Delphi’s form designer. In short,
you create a new form, save it, right
click the form and select Add to
Repository. Fill in the dialog box
and your new form is made avail-
able to all projects.

A project can then create a new
form which inherits from the first
form in the repository by selecting
File|New and then the page which
has the form on it, clicking on
the Inherit radio button, and then
the Ok button. Voila! A new form,
which inherits from the one in the
repository.

Delphi’s implementation is quite
clever and fun to illustrate. Add
components to the original form or
modify, move or resize compo-
nents in the original form and the
changes are reflected in all of the
original form’s sub-forms. The
sub-forms themselves can make
their own modifications to existing
components and add their own.
You can also inherit from the

sub-forms. The only restriction is
that you can’t delete components
added to your parent forms (but
you can set their Visible property
to False). In addition, any compo-
nent can easily be reset to its par-
ent’s behaviour after it has been
changed by right clicking and
selecting Revert to Inherited.
Unfortunately, there is no selec-
tion process so all properties are
restored to their inherited values.
This is only a small inconvenience.

VFI: Why Use It?
Great, so now we know all about
VFI. I have to admit that my view is
that, despite a feature being
impressive, I have to see good ben-
efits to make me use it. That’s what
I hope to accomplish here.

There are at least four reasons
why you might want to use VFI. The
first is that you might want to
create a form which is as simple as
Delphi’s own TForm but has one or
two additional features or modifi-
cations and you want all forms in
your application to inherit from
this form. VFI will let you do this.
Say, for example, you grudgingly
accept that users want to use the
Enter key to move from control to
control throughout your applica-
tion. This is a commonly requested
feature and the code to achieve
this is very straightforward: set the
form’s KeyPreview to True and add
an OnKeyPressevent (see Listing 1).

The problem for normal applica-
tion development is that you
would have to add this code to
each and every form in the applica-
tion. This would effectively mean
block copying the code from the
first form to each and every new
form. As a general rule of program-
ming if ever you encounter a prob-
lem where the solution is to block
copy code then you should look for
a better solution. VFI is a better
solution. Create a new form which

has the amendments to allow the
Enter key to move to the next con-
trol and add the form to the reposi-
tory. From here on you have two
choices. The first choice is that
you can remember to always
create new forms from the form in
the repository. Another rule I have
is that whenever a programmer
has to remember to do something
then the programmer will, in the
fullness of time, eventually forget
what it is that they have to remem-
ber (I include myself in this group).
So any solution where you have to
remember to do something isn’t a
good solution. The second choice
is to get Delphi to always use your
form for all new forms. You can do
this from Tools | Repository:
select the page containing the
form, select the form itself and
check on the New Form checkbox.

Another reason for having a
standard form used throughout
the application is that this form is a
good place to drop a component
renaming component (which
renames components). It is a very
useful component which exists
solely to aid application develop-
ment and plays no part at runtime.
It uses TComponent.Notification to
detect when a developer drops a
new component onto a form and
then it renames the new compo-
nent according to your own
naming rules. Ray Lischner has a
very customizable component
renamer in his (still) excellent
Secrets Of Delphi 2 book, but there
are freeware components avail-
able and you can easily write your
own. The point is that the ‘base’
form is an excellent location for
such a component.

The only problem with this solu-
tion is that it requires foresight.
You must define your own basic
form and add it to the repository
right at the start of the project. A
trick I often use is to define a new

procedure TBasicForm.FormKeyPress(
Sender: TObject; var Key: Char);

if Key = #13 then begin
Key:=#0;
SendMessage(Handle,
WM_NEXTDLGCTL, 0, 0);

end;

➤ Listing 1

10 The Delphi Magazine Issue 56

form which is identical to TForm,
add that to the repository, and
always use that form thereafter.
This allows me the incredibly pow-
erful effect of being able to retro-
spectively change every form in
my application once I have worked
out what I want them to look like.

But, like I said, this requires fore-
sight. An alternative, if you have
bought into this idea after a project
is already under way, is to change
your PAS and DFM files. In the PAS
file you would modify the form’s
class declaration line from

TForm1 = class(TForm)

to

TForm1 = class(TBasicForm)

In the DFM file you would modify
the equivalent line from

object Form1: TForm1

to

object Form1: TBasicForm

There will also be more changes to
make if you have added events to
the parent form, but at least it is
possible to change a form’s ances-
try after it has been created.

Getting back to the reasons why
you might want to use VFI, the
second reason is to create forms
which have commonly used func-
tionality. The most common exam-
ple of this is the basic data
maintenance form. Whether you
use the BDE, ADO, IBExpress or
another solution, the probability is
that most of the maintenance
forms in your application have a
common look and feel and
common functionality. VFI is per-
fect for ensuring this common look
and feel and functionality. Define
the basic maintenance form and
add it to the repository. What I like
about this approach is that it
respects the most fundamental
truth of application development:
everything changes. When a
change is required it is introduced
into the parent and it cascades
through all of the children. Clearly
this is just common or garden

inheritance doing its usual stuff
and this is a very old benefit of
OOP. But that doesn’t change how
powerful and useful it is.

The third reason affects your
design philosophy for customiz-
ation. Vertical market applications
often need to be customized for a
specific customer. The best solu-
tion is to attempt to integrate the
specific customer’s needs into the
basic package. But this is not
always the optimum solution, as
excessive use of this approach can
lead to application bloat. The tradi-
tional solution to this problem is to
copy the entire application to a
separate directory and make the
necessary modifications to the
new copy. This is a truly awful solu-
tion and is one of the reasons why
we have inheritance. As a result it
isn’t too surprising to learn that
this is the third benefit of VFI. To
solve this problem you would
leave the original application com-
pletely intact and create a new
customer-specific form which
inherits from the original form. The
customer-specific modifications
would now be made to the child
form. The original code would
include conditional compilation as
shown in Listing 2.

Clearly there is a law of diminish-
ing returns involved in this process
as the number of customer-specific
versions increases, but if this
number is low then VFI is an
excellent solution.

The fourth reason is to create
new data modules which inherit
from other data modules. This
would allow you to reuse data mod-
ules and still be able to make
amendments which are only rele-
vant to a specific context. This idea
was more fully covered in Issue 53.

VFI: Problems
As you know from previous arti-
cles, it isn’t my way to show only
the good points in a feature and
pretend that the bad points don’t

exist. So that brings me to the bad
points. If you’ve ever written a
component you’ll know that one of
the most common things you want
to do is add your own properties to
your component. It’s the same for
VFI: you want to add your own
properties to a form which will
appear in the Object Inspector.
Unfortunately, this is where the
system falls down.

Let’s say my new form’s class
definition looks like the one shown
in Listing 3. The idea is that the
form has a property which allows
the programmer to decide
whether Enter should be treated as
a Tab. When you add the form to
the repository and create a new
form which inherits from this form,
you would expect to see the
EnterAsTab property to appear in
the Object Inspector. But it does
not. The problem is that Delphi
cheats. When you create any form
in the IDE it is always a TForm
despite what the Object Inspector
or the class declaration in the PAS
file might say. As a result your own
properties are ignored.

Fortunately, we can work
around this by creating a new com-
ponent which exists solely to hold
the form’s properties and to trans-
fer them from the component to
the form when the component is
created at runtime. It isn’t elegant
but it works. Listing 4 shows a com-
ponent called TBasicFormProp-
erties which achieves this.

The class uses the TComponent.
Loaded method to copy across its
EnterAsTab property to the form’s
EnterAsTabproperty. Although this
shows the basic approach of such
a component it could be improved
a little. The problem with this com-
ponent is that it is tightly coupled

➤ Above: Listing 2 ➤ Below: Listing 3

TBasicForm = class(TForm)
private
FEnterAsTab: boolean;

published
property EnterAsTab: boolean
read FEnterAsTab
write FEnterAsTab;

end;

{$IFDEF CUSTOMERSPECIFIC}
Form := TCustomerSpecificMaintForm.Create(Application);

{$ELSE}
Form := TMaintForm.Create(Application);

{$ENDIF}

12 The Delphi Magazine Issue 56

with the form to which it refers. A
better solution would be to use
RTTI to walk through the compo-
nent’s published properties look-
ing for exact matches with
published properties of the com-
ponent’s owner (ie the TBasicForm)
and then assigning the values
appropriately.

Another problem with VFI is that
it relies on all of the components
which are on the parent form
including csInheritable in their
ComponentStyle property. If a form
contains a component which is not
inheritable then Delphi will refuse
to create the child form. A simple
solution to this problem is to
create new components which
inherit from the offending compo-
nents and change their construc-
tor so that the csInheritable
enumerated type is included in
ComponentStyle. Listing 5 shows the
constructor for a TInheritable-
Notebook which inherits from
TNotebook and adds back the
csInheritable enumerated type.

Of course, this is a bit short-
sighted. There is usually a good
reason why the component does
not include csInheritable and this
solution simply overrides the set-
ting and ignores whatever problem
results from inheriting from a form
which includes such a component.
In the case of TNotebook, csInh-
eritable is excluded because of the
way TNotebook is streamed. If you
place a component on the TNote-
book, save the application, close it
and reload it, you will see that
Delphi cannot reload the inherited
form. However, the relative impact

on any application of
this limitation is likely to
be very small as, in the
whole of Delphi 5 Enter-
prise’s VCL, there are
only two components
which do not include
csInheritable (TTabbed-
Notebook and TNotebook)
and both of these are on
the Win3.1 page.

Frames: A Quick Recap
At first sight frames have a lot in
common with component tem-
plates which were introduced in
Delphi 3. Don’t misunderstand me
here, I’m a big Delphi fan and I think
it is a great product which is very
well designed. However, it is unre-
alistic to expect that, just because
you know and love a product, the
product does not have any fea-
tures which are an unmitigated
disaster. Component templates
are such a feature in my view. They
get my award for the worst feature
in any release of Delphi. The
reason? They are unmaintainable
and effectively block copy a collec-
tion of components. As such, they
create the typical maintenance
nightmare you get from any
solution which copies instead of
inherits. Frames (and form compo-
nents) are the correct answer to
the problem.

So what is a frame? A frame is a
form-like component which can be
dropped onto a form at design-
time. You can create a new frame
from File | New Frame. Your new
frame looks and behaves just like a
form but for clarity in the form

designer the grid is not visible. You
can drop components onto the
frame and design using all of the
techniques you use to design
forms. However, although frames
have a lot in common with forms,
they are not actually TForms. Figure
1 shows the frame and form class
hierarchy.

To use a frame you can select the
frame icon (the first icon on the
Standard page of the palette) and
drop it on a form. The resulting
behaviour is different to all other
components in Delphi, in that it
offers a dialog box showing all of
the available frames in the applica-
tion and allows the developer to
select one to drop onto the form.

Frames have a lot in common
with VFI because when the original
frame is changed all frames which
inherit from it reflect the change.
In addition, all the features for
customisation of the new frame (eg
moving components to different
locations and adding new compo-
nents) and reverting to the inher-
ited frame are the same as for VFI.
Furthermore, frames can be added
to and retrieved from the reposi-
tory in same way as forms. One fea-
ture which frames have over VFI is
that frames can be added directly
to the palette (right click on a
frame and select Add To Palette).

Frames: Why Use Them?
There are (at least) two reasons
why you might want to use frames.
The first is to replace component
templates. Component templates
allow you to create a pseudo-
component which is a composite
component, ie a component which
is a collection of other compo-
nents. A classic example is the dual

TBasicFormProperties = class(TComponent)
private
FEnterAsTab: boolean;

public
procedure Loaded; override;

published
property EnterAsTab: boolean read FEnterAsTab write FEnterAsTab;

end;
procedure TBasicFormProperties.Loaded;
begin
inherited;
if Owner is TBasicForm then
TBasicForm(Owner).EnterAsTab:=FEnterAsTab;

end;

➤ Above: Listing 4 ➤ Below: Listing 5

constructor TInheritableNotebook.Create(AOwner: TComponent);
begin
inherited;
Include(FComponentStyle, csInheritable);

end;

TDataModuleTDataModule

TScrollBoxTScrollBox TCustomFrameTCustomFrame

TFormTForm

TTTToolDockFormoolDockForm

TCustomDockFormTCustomDockForm TPropertyPageTPropertyPage

TCustomFormTCustomForm

TScrollingWinControlTScrollingWinControl

TWinControlTWinControl

TControlTControl

TComponentTComponent

TPersistentTPersistent

TTObjectObject

TFrameTFrame

➤ Figure 1

April 2000 The Delphi Magazine 13

listboxes and associated buttons
used in Project | Options | Forms
(see Figure 2).

The combination of the two
listboxes, the four buttons and the
drag and drop events which go
with the listboxes is an ideal exam-
ple of a composite component
which gets reused again and again
in applications.

The second reason to use frames
is to drop ‘forms’ onto other forms.
The purpose of this is to create a
plug-in architecture. A good work-
ing example of this idea (sadly not
written in Delphi and therefore not
using frames) is Microsoft Manage-
ment Console (used with Microsoft
Transaction Server, Internet Infor-
mation Server and others). If you
haven’t seen MMC (see Figure 3)
you’ll be seeing more of it in
Windows 2000.

The idea is that you write a ‘host’
program. This host program has an
interface to read plug-in modules.
In MMC this is a set of ‘snap-in’
interfaces. In a Delphi program this
could be a set of classes or
interfaces where each plug-in is
probably a dynamically loaded
package (using LoadPackage and
UnloadPackage). The host pro-
gram’s API would allow plug-ins to
populate a treeview on the left-
hand side with nodes. Each node
would have a ‘form’ or frame which
would be automatically displayed
on the right-hand side as its associ-
ated node was clicked on. There is
much more to the idea of a plug-in
architecture than this simple
sketch and a whole article could be
written on this subject, but I hope
this is enough to explain the idea.

Where frames help in this archi-
tecture is to allow the ‘forms’
(frames) to be easily developed

independently of the host pro-
gram. Of course, anyone who has
tried to write such an architecture
prior to Delphi 5 will know that you
don’t need frames to achieve this
result. TForms can be embedded on
other forms at runtime using the
code shown in Listing 6.

However, frames are more light-
weight than forms and more suited
to this task.

Frames: Problems
Just as frames share many benefits
with VFI they also share many of
their problems. Frames do not
allow components which do not
include csInheritable in their
ComponentStyle to be added to the
original frame. The workaround for
frames is the same as the
workaround for VFI, but also has
the same caveat as for VFI.

Another annoying problem is
that the process of storing a form
in the repository and checking on
the New Form checkbox to ensure
that all new forms created inherit
from the one in the repository (as
described earlier) also applies to
frames. When you set this up and
then create a new frame, you don’t
get a new frame at all. Instead, you
get a new form which inherits from
the one in the repository just as if
you had asked for a new form
instead of a new frame. This behav-
iour is still true in Delphi 5 Update
Pack 1 (aka Delphi 5.01) so I am left
wondering whether this is, in fact,
the intended behaviour.

Another apparent problem is the
problem of inheritance. One of the
benefits of VFI was that forms
inherited from their parents and
this included code inheritance.
Frames also support inheritance in
the same way with the exception

that one frame cannot
inherit from another
frame. At first sight
this appears to be a
hindrance to the
plug-in architecture
described above. The
problem is that all
plug in frames will
want to have a large

amount of code inherited from
some base class to get the plug-in
architecture to work. Without
code inheritance this appears to
be a problem.

As you can guess from the way
the last paragraph was phrased,
there is a solution to this problem.
The solution is a sign of our times.
Many years ago programmers
would make their programs exten-
sible using DLL plug-ins and a
function-based architecture. Of
course, the programming world
moved on from function-based
programming to object oriented
techniques, so it became more
common to provide the same
architectures using classes. How-
ever, our world has moved on even
further and the solution today is to
use interfaces. Interfaces are the
solution to this problem.

The idea is that you would
create an interface called, say,
IPlugInFrame, and you would
modify the class declaration for
each frame to include this inter-
face, for example:

TCustomerFrame =
class(TFrame, IPlugInFrame)

(Delphi has no objection to you
manually modifying either frame
or form class declarations to
include your own interfaces). Of
course, at this point, you could
argue that all we’ve achieved is the
ability to share a common inter-
face amongst frames. What we
have not achieved is the ability to
share common code amongst
frames. This is one reason for the
introduction of the implements
directive in Delphi 4. This directive

➤ Figure 2

➤ Figure 3

14 The Delphi Magazine Issue 56

allows an interface to be imple-
mented by a property instead of
directly by the class. As such it rep-
resents a simple indirection. List-
ing 7 fleshes out the frame class.

The IPlugInFrame interface and
the TPlugInFrame class are left
blank to concentrate on just the
solution. The frame’s constructor
creates a TPlugInFrame object from
which the IPlugInFrame interface is
automatically extracted. Thus the
code in the TPlugInFrame class is
reused for every frame (which is
implemented in this way) giving
the same benefits as code
inheritance.

Form Components
One related subject which I haven’t
mentioned here is creating form
components. A form component is
a component which uses a con-
tainer to hold many other compo-
nents. The container could be a
form (as the name implies) but it is
much easier to implement if the
container is another standard com-
ponent such as a scroll box, panel
or group box. This has many of the
benefits of VFI and frames but also
some other drawbacks.

Friend Or Foe?
So what we have learnt is that VFI
and frames have a lot in common
but also some differences. Table 1
shows a summary of the differ-
ences between VFI, frames and
form components.

Using this table you can decide
which approach is best for you.
Clearly, form components cannot
be designed visually and this

makes development slow and
painstaking because you have to
manually write the code to create
the components and initialise their
properties. If you decide to take
this approach you would be well
advised to write a wizard which
would allow you to design the com-
ponent visually on a form and then
generate the equivalent code to
create such a component. A prob-
lem with VFI is that the resulting
forms cannot be dropped onto
other forms at design-time (you
can drop them onto other forms in
code at runtime though). One of
the biggest differences between
form components and VFI/frames
is that form components are fixed
by the component designer
whereas VFI/frames can still be
modified by the end programmer.
Having the layout and content
fixed is better if you want the
layout and content fixed but worse
if you don’t want it fixed. That may

sound like a very obvious state-
ment but it is intended to show
that there is no right or wrong
here but simply what fits your
requirements.

Conclusion
Visual Form Inheritance was a
great feature when it was added in
Delphi 2 and it remains a very
viable and useful feature today.
The introduction of frames in
Delphi 5 should not be seen as a
replacement for VFI, as VFI is suit-
able for situations which frames
are not and vice versa. Frames
should certainly be seen as a
replacement for component tem-
plates.

Both VFI and frames have their
pros and cons and form compo-
nents can be appropriate in situa-
tions which neither VFI and frames
are suited to.

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd (www.EnterpriseL.com), a
training and development
company specialising in Delphi
which is now running ADO
courses. He can be contacted at
gsmithferrier@EnterpriseL.com

➤ Above: Listing 6 ➤ Below: Listing 7

IPlugInFrame = interface
end;
TPlugInFrame = class(TInterfacedObject, IPlugInFrame)
end;
TCustomerFrame = class(TFrame, IPlugInFrame)
private
FPlugInFrame: IPlugInFrame;

public
constructor Create(AOwner: TComponent); override;
property PlugInFrame: IPlugInFrame
read FPlugInFrame write FPlugInFrame
implements IPlugInFrame;

end;
constructor TCustomerFrame.Create(AOwner: TComponent);
begin
inherited;
PlugInFrame:=TPlugInFrame.Create;

end;

Form
Components

Visual Form
Inheritance Frames

Can design visually ? No Yes Yes

Available from... Palette Repository Palette or
Repository

Can be placed on a form
at design-time ?

Yes No Yes

The end programmer can
modify the form/frame ?

No Yes Yes

Can new forms/frames inherit
from a parent other than
TForm/TFrame ?

Yes Yes No

Can add interfaces ? Yes Yes Yes

➤ Table 1

// create the new form (the HostForm is the owner)
Form:=TPlugInForm1.Create(HostForm);
Form.BorderStyle:=bsNone;
// add the new form to the scroll box on the right hand side
Form.Parent:=HostForm.RHSScrollBox;

	VFI: A Quick Recap
	VFI: Why Use It?
	VFI: Problems
	Frames: A Quick Recap
	Frames: Why Use Them?
	Frames: Problems
	Form Components
	Friend Or Foe?
	Conclusion

